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Abstract—The paper describes a new scalable algorithm called 
NSLP for solving high-dimension, non-stationary linear program-
ming problem on the modern cluster computing systems. The al-
gorithm consists of two phases: Quest and Targeting. The Quest 
phase calculates a solution of the system of inequalities defining 
the constraint system of the linear programming problem under 
condition of the dynamic changes of input data. To do this, it uses 
the apparatus of Fejer maps. The Targeting phase forms a special 
system of points having the shape of the n-dimensional axisymmet-
ric cross. The cross moves in the n-dimensional space in such a way 
that the solution of the linear programming problem permanently 
was in the ε-vicinity of the central point of the cross. 

Keywords—NSLP-algorithm, non-stationary linear program-
ming problem, large-scale linear programming, Fejer map 

I.  INTRODUCTION 

New measurement technology in the industry has spawned 
the large-scale linear programming (LP) problems. Each of 
these problems uses Big Data from subject area. Such problem 
is formalized as a linear programming problem that involve up 
to tens of millions of constraints and up to hundreds of millions 
of decision variables. In many cases, the LP problems arising in 
the industry are nonstationary (dynamic). The period of input 
data change can be within the range of hundredths of a second. 

Until now, one of the most popular methods solving LP 
problems is the class of algorithms proposed and designed by 
Dantzig on the base of the simplex method [1]. The simplex 
method has proved to be effective in solving a large class of LP 
problems. However, Klee and Minty [2] gave an example show-
ing that the worst-case complexity of simplex method is expo-
nential time. Nevertheless, Khaciyan [3] proved that LP problem 
can be solved in polynomial time by a variant of an iterative el-
lipsoidal algorithm developed by Shor [4]. Attempts to apply the 
ellipsoidal algorithm in practice were unsuccessful, since, in 
most cases, this algorithm demonstrated much worse efficiency 
than the simplex did. Karmarkar in [5] proposed a method for 
linear programming called “Interior point method” which runs 
in polynomial time and is also very efficient in practice. 

The simplex method and the method of interior points re-
main today the main methods for solving the LP problem. How-
ever, these methods may prove ineffective in the case of large 
scale LP problems with rapidly changing and (or) incomplete 
input data. The author in [6] described a parallel algorithm for 

solving LP problems with not-formalized constraints. The main 
idea of the proposed approach is to combine linear programming 
and discriminant analysis methods. The discriminant analysis 
demands two sets of patterns M  and N . The first set must sat-
isfy the not-formalized constraints and the second mustn’t. To 
obtain representative patterns, the methods of data mining [7] 
and time series analysis can be used [8]. To overcome the prob-
lem of non-stationarity of input data, the authors proposed in 
[9], [10] the Pursuit algorithm for solving non-stationary LP 
problems on cluster computing systems. The Pursuit algorithm 
uses Fejer maps [11] to build a pseudo-projection onto the con-
vex bounded set. The pseudo-projection operator is like the pro-
jection, but, in contrast to the last, the pseudo-projection is stable 
for dynamic change of input data. In the paper [12], the author 
investigated the efficiency of using multi-core processors Intel 
Xeon Phi to calculate the pseudo-projections. 

This paper describes the new algorithm NSLP (Non-Station-
ary Linear Programming) for solving large scale non-stationary 
LP problems on cluster computing systems. The NSLP algo-
rithm is more efficient than the Pursuit algorithm, since it uses a 
compute-intensive pseudo-projection operation once (the Pur-
suit algorithm computes pseudo-projections K times at each it-
eration, where K is the number of processor nodes). The rest of 
the paper is organized as follows. Section II gives a formal state-
ment of a LP problem and presents the definitions of Fejer pro-
cess and the pseudo-projection onto a polyhedron. Section III 
describes the new NSLP algorithm. Section IV summarizes the 
results obtained and proposes the directions for future research. 

II. PROBLEM STATEMENT 

Let we be given a non-stationary LP problem in the vector 
space n : 

  max , | , 0 ,t t tc x A x b x   (1) 

where the matrix tA  has m  rows. The non-stationarity of the 

problem means that the values of the elements of the matrix tA  

and the vectors tb , tc  depend on the time 0t  . We assume 
that the value of 0t   corresponds to the initial instant of time: 

 0A A , 0b b , 0c c . (2) 



Let us define the map : n n
t    as follows: 
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where: tia  – i-th row the matrix tA ; 1, ,t tmb b  – elements of the 

column tb . Let us denote 
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Let tM  be a polyhedron defined by the constraints of the 
non-stationary LP problem (1). Such a polyhedron is always 
convex. It's known [[11]] that t  will be a continuous single-

valued tM -fejerian map for the relaxation factor 0 2  . 

By definition, put 

 ( ) ( )s
t t t

s

x x    . (5) 

Fejer process generated by the map t  for an arbitrary initial 

approximation 0
nx   is the sequence  0 0

( )s
t s

x



. It is known 

(see Lemma 39.1 in [[13]]) that Fejer process for fixed t  con-
verges to a point belonging to the polyhedron M : 

  0 0
( )s

t ts
x x M




  . (6) 

Let us consider the simplest case of non-stationarity, which 
is a translation of the polyhedron 0M M  by the fixed vector 

nd   in one unit of time. In this case, tA A , tc c  and the 
non-stationarity problem (1) takes the following form: 

  max , | ( ) , 0c x A x td b x   , (7) 

what is equivalent to 

  max , | , 0c x Ax b Atd x   . 

Comparing this with (1), we obtain tb b Atd  . In this case, 

tM -fejerian map (3) is converted to the following form: 
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what is equivalent to 
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Let  -projection (pseudo-projection) of point nx  on 

polyhedron M  be understood as the map ( ) lim ( ).s
M s

x x 


  

III. NSLP ALGORITHM 

The NSLP (Non-Stationary Linear Programming) algorithm 
is designed to solve large-scale non-stationary LP problems on 
cluster computing systems. It includes two phases: Quest and 
Targeting. The Quest phase calculates a solution of the system 
of inequalities defining the constraint system of the linear pro-
gramming problem under condition of the dynamic changes of 
input data. To do this, it uses the apparatus of Fejer maps. The 
Targeting phase forms a special system of points having the 
shape of the n-dimensional axisymmetric cross. The cross 
moves in the n-dimensional space in such a way that the solution 
of the LP problem permanently was in the ε-vicinity of the cen-
tral point of the cross. Let us describe both phases of the algo-
rithm in more detail. 

A. Quest phase 

Without loss of generality, we can assume that all the calcu-
lations are performed in the region of positive coordinates. At 
the beginning, we choose an arbitrary point 0 0

nz   with non-
negative coordinates. This point plays the role of initial approx-
imation of the problem (1). Then we organize the iterative Fejer 
process of the form (6), during which the Fejer approximations 
consecutively are calculated by using the Fejer mapping (3). 
This process converges to a point located on the  
polyhedron tM . In according to the non-stationary nature of the 

problem (1), the polyhedron tM  can change its position and 
shape during calculating the pseudo-projection. Every L itera-
tions, the input data update is performed, where L is some fixed 
positive integer that is a parameter of the algorithm. Let us de-
note by 0 1, , , ,kt t t   the sequential points of time correspond-
ing to instants of the input data update. Without loss of general-
ity, we can assume that 

 0 1 20, , 2 , , ,kt t L t L t kL      (9) 

This corresponds to the case when one unit of time is equal to 
time spent by the computer to calculate one value of Fejer map 
using formula (3). 

Let the polyhedron  tM  take shapes and locations 

0 1, , , ,kM M M   at the points of time (9). Let 0 1, , , ,k     
be Fejer maps determined by formula (3), taking into account 
the changes of the input data of problem (1) at the points of 
time (9). In the Quest phase, the iterative process calculates the 
following sequence of points: 

 1 0 0 2 1 1 1 1{ ( ), ( ), , ( ), }L L L
k k kz z z z z z        . 

Let us briefly denote this iterative process as follows: 

  0 0
( )L

k k
z




. (10) 



This iterative process ends when 

  1dist ( ),L
k k kz M   , 

where 0   is a positive real number being a parameter of the 
algorithm. One of the most important issues is the issue of the 
iterative process (10) convergence. In general case, this issue re-
mains open. However, the following theorem holds for the non-
stationary problem (7). 

Theorem 1. Let non-stationary LP problem be given by (7). 
Let Fejer maps 0 1, , , ,k     be given by the following for-
mula: 

   
2

1

max , ,0m
i i

k i
i i

a x kLd b
x x a

m a




 
   . (11) 

This formula is derived using (8) and (9). By definition, put 

 1 1( )L
k k kz z     (12) 

where 1,2,k   . Then 

 lim dist( , ) 0k k
k

z M


  (13) 

under the following condition 

 \ dist( , ) dist( ( ), ) .n Lx M Ld x M x M     (14) 

The theorem 1 gives a sufficient condition for the conver-
gence of the iterative process for the non-stationary  
problem (7). In order to prove this theorem, we will need the 
following auxiliary lemma. 

Lemma 1. Under the conditions of Theorem 1, we have 

 ( ) ( )l l
pv u pLd v u pLd       (15) 

for any 0,1,2,p   , 1,2,3,l    and , nu v . 

Proof. The proof is by induction on l . Induction basis: let 
1l   and the following condition holds 

 v u pLd  . (16) 

Then, using (16), (11) and (4), we get 

( ) ( ) ( ) ( )p pv u u pLd u         
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Therefore, (15) holds if 1l  . Inductive step: assume that con-
dition (16) is true. Using the induction hypothesis, we get 

 1 1( ) ( )l l
p v u pLd    . (17) 

Then, combining (5), (17), (11) and (4), we obtain 
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This completes the proof   

Proof o f Theore m 1. Let us fixe an arbitrary point 

0 \nz M . Let the map : n n    be given by: 

 
 
 

( ) , ;

, .

Lx x Ld x M

x x x M

 



   

  
 (18) 

By definition, put 

 0 0y z  (19) 

and 

 1( )k ky y   (20) 

for 1,2,k   . 

Using induction on k , let us show that 

 k kz y kLd   (21) 

for 0,1,2,k   . Induction basis: the equation (21) holds for 
0k  , since, taking into account (19), the equation 

 0 0 0z y Ld    

holds. 

Inductive step: suppose  

 1 1 ( 1)k kz y k Ld     (22) 

for 0k  . Substituting 1ku y  , 1kv z  , l L  and 1p k   
in Lemma 1, and using (15), we obtain 

 1 1 1 1 1( 1) ( ) ( ) ( 1)L L
k k k k kz y k Ld z y k Ld            . 



Comparing this with (22), we have 

 1 1 1( ) ( ) ( 1)L L
k k kz y k Ld      . (23) 

Combining (20), (18), (12) and (23), we get 

1 1

1 1 1

( ) ( )

( ) ( ) ( 1) .

L
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Therefore, equation (21) holds. 

Now we show that 

 dist( , ) dist( , )k k kz M y M  (24) 

for all 0,1,2,k   . Let us choose a point ŷ M  that satisfies 
the following condition 

 ˆ dist( , )k ky y y M  . (25) 

Such a point exists and is unique, since the polyhedron M  is a 
bounded, closed, convex set. The polyhedron kM  is a result of 
translating the polyhedron M  by the vector kLd . Since  
ŷ M , it follows that the point ˆẑ y kLd   belongs to the pol-

yhedron kM . Taking into account (21), we conclude that the 

points ˆˆ{ , , , }k ky z z y  are the vertices of a parallelogram. Hence,  

 ˆˆ k kz z y y   . (26) 

Let us show that 

 ˆ dist( , )k k kz z z M  . (27) 

Suppose, for a contradiction, that kz M   such that 

 ˆk kz z z z    . (28) 

Since kz M , it follows that the point y z kLd    belongs to 
the polyhedron M . Now if we recall that the points 

ˆˆ{ , , , }k ky z z y  are the vertices of a parallelogram, we get 

 k ky y z z    . 

Combining this with (28), (26) and (25), we obtain 

 ˆˆ dist( , )k k k k ky y z z z z y y y M         . 

It follows that 

  dist( , )k ky M y y y M     . 

This contradicts the definition of the distance between a point 
and a set. Hence, the formula (27) holds. Combining (25), (26) 
and (27), we get that the formula (24) holds. 

Further, the map   defined by the formula (18) is single-
valued and continuous (it follows from the single-valuedness 

and continuity of the map  ). Let us show that the map   is 

M-fejerian. Let \nx M  be an arbitrary point not belonging 
to the polyhedron M . Let us choose a point x̂ M  that satisfies 
the following condition 

 ˆ( ) dist( ( ), )L Lx x x M   . (29) 

Such a point exists and is unique, since the polyhedron M  is a 
bounded, closed, convex set. Combining the dist definition, the 
formula (18), the triangle inequality for the norm, the formulas 
(29) and (14), we get 

 
ˆ ˆdist( ( ), ) ( ) ( )

ˆ( ) dist( ( ), ) dist( , ).

L

L L

x M x x x Ld x

Ld x x Ld x M x M

  

 

     
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It follows that   is M-fejerian. Hence, 

  0 0
( )k

k
y y M




  . 

It means that lim dist( , ) 0k
k

y M


 . Taking into account (24), we 

conclude that lim dist( , ) 0k k
k

z M


 . This completes the proof of 

the theorem   

From the non-formal point of view, Theorem 1 says that the 
Fejer process must converge faster than the polyhedron M  
“runs away”. To increase the speed of Fejer map calculation, 
manycore processors can be used. In the paper [[12]], this issue 
was investigated on multi-core coprocessors of Intel Xeon Phi 
with MIC architecture [[14]]. It was shown that the use of Intel 
Xeon Phi is efficient for solving large-scale problems. 

B. Targeting phase 

The Targeting phase begins after the Quest phase. At the 
Targeting phase, a n-dimensional axisymmetric cross is formed. 
The n-dimensional axisymmetric cross is a finite set 

0 1{ , , } n
PG g g     having the cardinality equals 1P  , 

where P  is a multiple of 2n  . Among points of the cross, the 
point 0g  called the central point is single out. The initial coor-
dinates of the central point are assigned the coordinates of the 
point kz  calculated by using the iterative process (10) in the 
Quest phase. 

The set 0\{ }G g  is divided into n  disjoint subsets iC   

( 0, , 1i n  ) called the cohorts: 

 
1

0
0

\ { }
n

i
i

G g C




 . 

 
Each i-th cohort ( 0, , 1i n  ) consists of 

 K P n  (30) 



points lying on the straight line, which is parallel to the i-th co-
ordinate axis and passing through the central point 0g . By itself, 
the central point does not belong to any cohort. The distance be-
tween any two neighbor points of the set 0{ }G g  is equal to 
the constant s . The number of points in one dimension exclud-
ing the central point is equal to K . The symmetry of the cross 
supposes that K  takes only even values greater than or equal 
to 2. Using formula (30), we obtain the following formula giving 
the total number of points in the cross: 

 1 1P nK   . (31) 

Since K  can take only even values greater than or equal to 2 
and 2n  , from formula (31), it follows that P  can also take 
only even values and 4P  . 

Each point of the cross G  is uniquely identified by a marker 
being a pair of integers numbers ( , )   such that 0 n  , 

2K  . Informally,   specifies the number of the cohort, 

and   specifies the sequence number of the point in the cohort 

C , being counted out of the central point. The coordinates of 

the point ( , )x    having the marker ( , )   can be reconstructed 

as follows: 

 ( , ) 0 (0, ,0, ,0, ,0)x g s 


    . (32) 

The vector being added to 0g  in the right part of the formula 
(32) has a single non-zero coordinate in the position  . This 

coordinate equals s  , where s  is the distance between neigh-
bor points in a cohort. 

Targeting phase includes the following steps. 

1. Build the n-dimensional axisymmetric cross G , which 
has K  points in a cohort, the distance between neighbor 
points equaling s , and the center at point 0 kg z , where 

kz  is obtained as a result of the Quest phase. 

2. Calculate kG G M   . 

3. Calculate C C G     for 0, , 1n   . 

4. Calculate   
1

0

arg max ,
n

kQ c g g C C 






     , . 

5. If 0 kg M  and 0, max ,k k
q Q

c g c q


  then : 1k k   and 

go to the step 2. 

6. 0 : q Q

q

g
Q



. 

7. : 1k k  . 

8. Go to the step 2. 

Thus, in the Targeting phase, the steps 2-7 form a perpetual 
loop in which the approximate solution of the non-stationary LP 

problem is permanently recalculated. From the non-formal point 
of view, in Step 2, we determine which points of the cross G  
are belonged to the polyhedron kM . To do it, we check the con-

dition k kA g b  for every point g G . Such checks can be ex-
ecuted in parallel by the different processor nodes of a cluster 
computing system. For it, P of MPI-processes can be exploited, 
where P is defined by the formula (31). To distribute the points 
among the MPI-processes, we use the sequential numbering. 
Each point of the cross G  is assigned a unique number 

{0, , 1}P   . The sequential number   can be converted to 
a marker ( , )   by the following formulas (symbol   denotes 
the integer division): 

  1 2K K     ; (33) 

        sign 1 mod 2 1K K K        . (34) 

The backward conversion can be performed by the formula 

 sign( )
2

K K
     . (35) 

IV. CONCLUSION 

In this paper, a new NSLP algorithm for solving non-station-
ary linear programming problems of large-scale dimension has 
been described. This algorithm is oriented to cluster computing 
systems with manycore processors. The algorithm consists of 
two phases: Quest and Targeting. The Quest phase calculates a 
solution of the system of inequalities defining the constraint sys-
tem of the linear programming problem under condition of the 
dynamic changes of input data. To do this, we organize Fejer 
process computing a pseudo-projection onto the polyhedron M  
defined by the constraints of the LP problem. In this case, the 
input data changes during the calculation of the pseudo-projec-
tion. For the described iterative process, the convergence theo-
rem is proved in case of translating the polyhedron M . The 
Targeting phase forms a special system of points having the 
shape of the n-dimensional axisymmetric cross. The cross 
moves in the n-dimensional space in such a way that the solution 
of the linear programming problem permanently was in the ε-
vicinity of the central point of the cross. A formal description of 
the Targeting phase is presented in the form of a sequence of 
steps. Our future goal is a parallel implementation of the NSLP 
algorithm in C++ language using MPI library, and computa-
tional experiments on a cluster computing system using syn-
thetic and real LP problems. 
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