
Scalable algorithm for non-stationary linear
programming problems solving

Irina M. Sokolinskaya
School of Electrical Engineering and Computer Science

South Ural State University (national research university)
Chelyabinsk, Russian Federation

Irina.Sokolinskaya@susu.ru

Abstract—The paper describes a new scalable algorithm called
NSLP for solving high-dimension, non-stationary linear program-
ming problem on the modern cluster computing systems. The al-
gorithm consists of two phases: Quest and Targeting. The Quest
phase calculates a solution of the system of inequalities defining
the constraint system of the linear programming problem under
condition of the dynamic changes of input data. To do this, it uses
the apparatus of Fejer maps. The Targeting phase forms a special
system of points having the shape of the n-dimensional axisymmet-
ric cross. The cross moves in the n-dimensional space in such a way
that the solution of the linear programming problem permanently
was in the ε-vicinity of the central point of the cross.

Keywords—NSLP-algorithm, non-stationary linear program-
ming problem, large-scale linear programming, Fejer map

I. INTRODUCTION

New measurement technology in the industry has spawned
the large-scale linear programming (LP) problems. Each of
these problems uses Big Data from subject area. Such problem
is formalized as a linear programming problem that involve up
to tens of millions of constraints and up to hundreds of millions
of decision variables. In many cases, the LP problems arising in
the industry are nonstationary (dynamic). The period of input
data change can be within the range of hundredths of a second.

Until now, one of the most popular methods solving LP
problems is the class of algorithms proposed and designed by
Dantzig on the base of the simplex method [1]. The simplex
method has proved to be effective in solving a large class of LP
problems. However, Klee and Minty [2] gave an example show-
ing that the worst-case complexity of simplex method is expo-
nential time. Nevertheless, Khaciyan [3] proved that LP problem
can be solved in polynomial time by a variant of an iterative el-
lipsoidal algorithm developed by Shor [4]. Attempts to apply the
ellipsoidal algorithm in practice were unsuccessful, since, in
most cases, this algorithm demonstrated much worse efficiency
than the simplex did. Karmarkar in [5] proposed a method for
linear programming called “Interior point method” which runs
in polynomial time and is also very efficient in practice.

The simplex method and the method of interior points re-
main today the main methods for solving the LP problem. How-
ever, these methods may prove ineffective in the case of large
scale LP problems with rapidly changing and (or) incomplete
input data. The author in [6] described a parallel algorithm for

solving LP problems with not-formalized constraints. The main
idea of the proposed approach is to combine linear programming
and discriminant analysis methods. The discriminant analysis
demands two sets of patterns M and N . The first set must sat-
isfy the not-formalized constraints and the second mustn’t. To
obtain representative patterns, the methods of data mining [7]
and time series analysis can be used [8]. To overcome the prob-
lem of non-stationarity of input data, the authors proposed in
[9], [10] the Pursuit algorithm for solving non-stationary LP
problems on cluster computing systems. The Pursuit algorithm
uses Fejer maps [11] to build a pseudo-projection onto the con-
vex bounded set. The pseudo-projection operator is like the pro-
jection, but, in contrast to the last, the pseudo-projection is stable
for dynamic change of input data. In the paper [12], the author
investigated the efficiency of using multi-core processors Intel
Xeon Phi to calculate the pseudo-projections.

This paper describes the new algorithm NSLP (Non-Station-
ary Linear Programming) for solving large scale non-stationary
LP problems on cluster computing systems. The NSLP algo-
rithm is more efficient than the Pursuit algorithm, since it uses a
compute-intensive pseudo-projection operation once (the Pur-
suit algorithm computes pseudo-projections K times at each it-
eration, where K is the number of processor nodes). The rest of
the paper is organized as follows. Section II gives a formal state-
ment of a LP problem and presents the definitions of Fejer pro-
cess and the pseudo-projection onto a polyhedron. Section III
describes the new NSLP algorithm. Section IV summarizes the
results obtained and proposes the directions for future research.

II. PROBLEM STATEMENT

Let we be given a non-stationary LP problem in the vector
space n :

  max , | , 0 ,t t tc x A x b x  (1)

where the matrix tA has m rows. The non-stationarity of the

problem means that the values of the elements of the matrix tA

and the vectors tb , tc depend on the time 0t  . We assume
that the value of 0t  corresponds to the initial instant of time:

 0A A , 0b b , 0c c . (2)

Let us define the map : n n
t   as follows:

    
2

1

max , ,0m
ti ti

t ti
i ti

a x b
x x a

m a





   


, (3)

where: tia – i-th row the matrix tA ; 1, ,t tmb b – elements of the

column tb . Let us denote

      
0 2

1

max , ,0m
i i

i
i i

a x b
x x x a

m a

 



    . (4)

Let tM be a polyhedron defined by the constraints of the
non-stationary LP problem (1). Such a polyhedron is always
convex. It's known [[11]] that t will be a continuous single-

valued tM -fejerian map for the relaxation factor 0 2  .

By definition, put

 () ()s
t t t

s

x x    . (5)

Fejer process generated by the map t for an arbitrary initial

approximation 0
nx  is the sequence  0 0

()s
t s

x



. It is known

(see Lemma 39.1 in [[13]]) that Fejer process for fixed t con-
verges to a point belonging to the polyhedron M :

  0 0
()s

t ts
x x M




  . (6)

Let us consider the simplest case of non-stationarity, which
is a translation of the polyhedron 0M M by the fixed vector

nd  in one unit of time. In this case, tA A , tc c and the
non-stationarity problem (1) takes the following form:

  max , | () , 0c x A x td b x   , (7)

what is equivalent to

  max , | , 0c x Ax b Atd x   .

Comparing this with (1), we obtain tb b Atd  . In this case,

tM -fejerian map (3) is converted to the following form:

  
  

2
1

max , , ,0m
i i i

t i
i i

a x b a td
x x a

m a




 
   ,

what is equivalent to

    
2

1

max , ,0m
i i

t i
i i

a x td b
x x a

m a




 
   . (8)

Let  -projection (pseudo-projection) of point nx on

polyhedron M be understood as the map () lim ().s
M s

x x 




III. NSLP ALGORITHM

The NSLP (Non-Stationary Linear Programming) algorithm
is designed to solve large-scale non-stationary LP problems on
cluster computing systems. It includes two phases: Quest and
Targeting. The Quest phase calculates a solution of the system
of inequalities defining the constraint system of the linear pro-
gramming problem under condition of the dynamic changes of
input data. To do this, it uses the apparatus of Fejer maps. The
Targeting phase forms a special system of points having the
shape of the n-dimensional axisymmetric cross. The cross
moves in the n-dimensional space in such a way that the solution
of the LP problem permanently was in the ε-vicinity of the cen-
tral point of the cross. Let us describe both phases of the algo-
rithm in more detail.

A. Quest phase

Without loss of generality, we can assume that all the calcu-
lations are performed in the region of positive coordinates. At
the beginning, we choose an arbitrary point 0 0

nz  with non-
negative coordinates. This point plays the role of initial approx-
imation of the problem (1). Then we organize the iterative Fejer
process of the form (6), during which the Fejer approximations
consecutively are calculated by using the Fejer mapping (3).
This process converges to a point located on the
polyhedron tM . In according to the non-stationary nature of the

problem (1), the polyhedron tM can change its position and
shape during calculating the pseudo-projection. Every L itera-
tions, the input data update is performed, where L is some fixed
positive integer that is a parameter of the algorithm. Let us de-
note by 0 1, , , ,kt t t  the sequential points of time correspond-
ing to instants of the input data update. Without loss of general-
ity, we can assume that

 0 1 20, , 2 , , ,kt t L t L t kL     (9)

This corresponds to the case when one unit of time is equal to
time spent by the computer to calculate one value of Fejer map
using formula (3).

Let the polyhedron tM take shapes and locations

0 1, , , ,kM M M  at the points of time (9). Let 0 1, , , ,k   
be Fejer maps determined by formula (3), taking into account
the changes of the input data of problem (1) at the points of
time (9). In the Quest phase, the iterative process calculates the
following sequence of points:

 1 0 0 2 1 1 1 1{ (), (), , (), }L L L
k k kz z z z z z        .

Let us briefly denote this iterative process as follows:

  0 0
()L

k k
z




. (10)

This iterative process ends when

  1dist (),L
k k kz M   ,

where 0  is a positive real number being a parameter of the
algorithm. One of the most important issues is the issue of the
iterative process (10) convergence. In general case, this issue re-
mains open. However, the following theorem holds for the non-
stationary problem (7).

Theorem 1. Let non-stationary LP problem be given by (7).
Let Fejer maps 0 1, , , ,k    be given by the following for-
mula:

   
2

1

max , ,0m
i i

k i
i i

a x kLd b
x x a

m a




 
   . (11)

This formula is derived using (8) and (9). By definition, put

 1 1()L
k k kz z   (12)

where 1,2,k   . Then

 lim dist(,) 0k k
k

z M


 (13)

under the following condition

 \ dist(,) dist((),) .n Lx M Ld x M x M    (14)

The theorem 1 gives a sufficient condition for the conver-
gence of the iterative process for the non-stationary
problem (7). In order to prove this theorem, we will need the
following auxiliary lemma.

Lemma 1. Under the conditions of Theorem 1, we have

 () ()l l
pv u pLd v u pLd      (15)

for any 0,1,2,p   , 1,2,3,l   and , nu v .

Proof. The proof is by induction on l . Induction basis: let
1l  and the following condition holds

 v u pLd  . (16)

Then, using (16), (11) and (4), we get

() () () ()p pv u u pLd u       

 
2

1

max , ,0
()

m
i i

i
i i

a u b
u pLd a u

m a

 



     

 

 

2
1

2
1

max , ,0

max , ,0
.

m
i i

i
i i

m
i i

i
i i

a u b
u pLd a u

m a

a u b
a pLd

m a










     


  





Therefore, (15) holds if 1l  . Inductive step: assume that con-
dition (16) is true. Using the induction hypothesis, we get

 1 1() ()l l
p v u pLd    . (17)

Then, combining (5), (17), (11) and (4), we obtain

1 1() () (()) (())l l l l
p p pv u v u         

1 1(()) (())l l
p u pLd u       

 1

1
2

1

1

max , () ,0
()

(())

l
m

i il
i

i i

l

a u b
u pLd a

m a

u



 










    

 



 

 

1

1
2

1

1

1
2

1

max , () ,0
()

max , () ,0
() .

l
m

i il
i

i i

l
m

i il
i

i i

a u b
u pLd a

m a

a u b
u a pLd

m a


















    


   





This completes the proof 

Proof o f Theore m 1. Let us fixe an arbitrary point

0 \nz M . Let the map : n n   be given by:

 
 

() , ;

, .

Lx x Ld x M

x x x M

 



   

  
 (18)

By definition, put

 0 0y z (19)

and

 1()k ky y  (20)

for 1,2,k   .

Using induction on k , let us show that

 k kz y kLd  (21)

for 0,1,2,k   . Induction basis: the equation (21) holds for
0k  , since, taking into account (19), the equation

 0 0 0z y Ld  

holds.

Inductive step: suppose

 1 1 (1)k kz y k Ld    (22)

for 0k  . Substituting 1ku y  , 1kv z  , l L and 1p k 
in Lemma 1, and using (15), we obtain

 1 1 1 1 1(1) () () (1)L L
k k k k kz y k Ld z y k Ld            .

Comparing this with (22), we have

 1 1 1() () (1)L L
k k kz y k Ld      . (23)

Combining (20), (18), (12) and (23), we get

1 1

1 1 1

() ()

() () (1) .

L
k k k k k k

L L
k k k

z y z y z y Ld

z y Ld k Ld Ld kLd

 

 
 

  

      

      

Therefore, equation (21) holds.

Now we show that

 dist(,) dist(,)k k kz M y M (24)

for all 0,1,2,k   . Let us choose a point ŷ M that satisfies
the following condition

 ˆ dist(,)k ky y y M  . (25)

Such a point exists and is unique, since the polyhedron M is a
bounded, closed, convex set. The polyhedron kM is a result of
translating the polyhedron M by the vector kLd . Since
ŷ M , it follows that the point ˆẑ y kLd  belongs to the pol-

yhedron kM . Taking into account (21), we conclude that the

points ˆˆ{ , , , }k ky z z y are the vertices of a parallelogram. Hence,

 ˆˆ k kz z y y   . (26)

Let us show that

 ˆ dist(,)k k kz z z M  . (27)

Suppose, for a contradiction, that kz M  such that

 ˆk kz z z z    . (28)

Since kz M , it follows that the point y z kLd   belongs to
the polyhedron M . Now if we recall that the points

ˆˆ{ , , , }k ky z z y are the vertices of a parallelogram, we get

 k ky y z z    .

Combining this with (28), (26) and (25), we obtain

 ˆˆ dist(,)k k k k ky y z z z z y y y M         .

It follows that

  dist(,)k ky M y y y M     .

This contradicts the definition of the distance between a point
and a set. Hence, the formula (27) holds. Combining (25), (26)
and (27), we get that the formula (24) holds.

Further, the map  defined by the formula (18) is single-
valued and continuous (it follows from the single-valuedness

and continuity of the map ). Let us show that the map  is

M-fejerian. Let \nx M be an arbitrary point not belonging
to the polyhedron M . Let us choose a point x̂ M that satisfies
the following condition

 ˆ() dist((),)L Lx x x M   . (29)

Such a point exists and is unique, since the polyhedron M is a
bounded, closed, convex set. Combining the dist definition, the
formula (18), the triangle inequality for the norm, the formulas
(29) and (14), we get

ˆ ˆdist((),) () ()

ˆ() dist((),) dist(,).

L

L L

x M x x x Ld x

Ld x x Ld x M x M

  

 

     

     

It follows that  is M-fejerian. Hence,

  0 0
()k

k
y y M




  .

It means that lim dist(,) 0k
k

y M


 . Taking into account (24), we

conclude that lim dist(,) 0k k
k

z M


 . This completes the proof of

the theorem 

From the non-formal point of view, Theorem 1 says that the
Fejer process must converge faster than the polyhedron M
“runs away”. To increase the speed of Fejer map calculation,
manycore processors can be used. In the paper [[12]], this issue
was investigated on multi-core coprocessors of Intel Xeon Phi
with MIC architecture [[14]]. It was shown that the use of Intel
Xeon Phi is efficient for solving large-scale problems.

B. Targeting phase

The Targeting phase begins after the Quest phase. At the
Targeting phase, a n-dimensional axisymmetric cross is formed.
The n-dimensional axisymmetric cross is a finite set

0 1{ , , } n
PG g g    having the cardinality equals 1P  ,

where P is a multiple of 2n  . Among points of the cross, the
point 0g called the central point is single out. The initial coor-
dinates of the central point are assigned the coordinates of the
point kz calculated by using the iterative process (10) in the
Quest phase.

The set 0\{ }G g is divided into n disjoint subsets iC

(0, , 1i n ) called the cohorts:

1

0
0

\ { }
n

i
i

G g C




 .

Each i-th cohort (0, , 1i n ) consists of

 K P n (30)

points lying on the straight line, which is parallel to the i-th co-
ordinate axis and passing through the central point 0g . By itself,
the central point does not belong to any cohort. The distance be-
tween any two neighbor points of the set 0{ }G g is equal to
the constant s . The number of points in one dimension exclud-
ing the central point is equal to K . The symmetry of the cross
supposes that K takes only even values greater than or equal
to 2. Using formula (30), we obtain the following formula giving
the total number of points in the cross:

 1 1P nK   . (31)

Since K can take only even values greater than or equal to 2
and 2n  , from formula (31), it follows that P can also take
only even values and 4P  .

Each point of the cross G is uniquely identified by a marker
being a pair of integers numbers (,)  such that 0 n  ,

2K  . Informally,  specifies the number of the cohort,

and  specifies the sequence number of the point in the cohort

C , being counted out of the central point. The coordinates of

the point (,)x   having the marker (,)  can be reconstructed

as follows:

 (,) 0 (0, ,0, ,0, ,0)x g s 


    . (32)

The vector being added to 0g in the right part of the formula
(32) has a single non-zero coordinate in the position  . This

coordinate equals s  , where s is the distance between neigh-
bor points in a cohort.

Targeting phase includes the following steps.

1. Build the n-dimensional axisymmetric cross G , which
has K points in a cohort, the distance between neighbor
points equaling s , and the center at point 0 kg z , where

kz is obtained as a result of the Quest phase.

2. Calculate kG G M   .

3. Calculate C C G    for 0, , 1n   .

4. Calculate   
1

0

arg max ,
n

kQ c g g C C 






     , .

5. If 0 kg M and 0, max ,k k
q Q

c g c q


 then : 1k k  and

go to the step 2.

6. 0 : q Q

q

g
Q



.

7. : 1k k  .

8. Go to the step 2.

Thus, in the Targeting phase, the steps 2-7 form a perpetual
loop in which the approximate solution of the non-stationary LP

problem is permanently recalculated. From the non-formal point
of view, in Step 2, we determine which points of the cross G
are belonged to the polyhedron kM . To do it, we check the con-

dition k kA g b for every point g G . Such checks can be ex-
ecuted in parallel by the different processor nodes of a cluster
computing system. For it, P of MPI-processes can be exploited,
where P is defined by the formula (31). To distribute the points
among the MPI-processes, we use the sequential numbering.
Each point of the cross G is assigned a unique number

{0, , 1}P   . The sequential number  can be converted to
a marker (,)  by the following formulas (symbol  denotes
the integer division):

  1 2K K     ; (33)

        sign 1 mod 2 1K K K        . (34)

The backward conversion can be performed by the formula

 sign()
2

K K
     . (35)

IV. CONCLUSION

In this paper, a new NSLP algorithm for solving non-station-
ary linear programming problems of large-scale dimension has
been described. This algorithm is oriented to cluster computing
systems with manycore processors. The algorithm consists of
two phases: Quest and Targeting. The Quest phase calculates a
solution of the system of inequalities defining the constraint sys-
tem of the linear programming problem under condition of the
dynamic changes of input data. To do this, we organize Fejer
process computing a pseudo-projection onto the polyhedron M
defined by the constraints of the LP problem. In this case, the
input data changes during the calculation of the pseudo-projec-
tion. For the described iterative process, the convergence theo-
rem is proved in case of translating the polyhedron M . The
Targeting phase forms a special system of points having the
shape of the n-dimensional axisymmetric cross. The cross
moves in the n-dimensional space in such a way that the solution
of the linear programming problem permanently was in the ε-
vicinity of the central point of the cross. A formal description of
the Targeting phase is presented in the form of a sequence of
steps. Our future goal is a parallel implementation of the NSLP
algorithm in C++ language using MPI library, and computa-
tional experiments on a cluster computing system using syn-
thetic and real LP problems.

REFERENCES
[1] Dantzig G. Linear programming and extensions. Princeton, N.J.:

Princeton university press, 1998. 656 pp.

[2] Klee V., Minty G.J. How good is the simplex algorithm? // Inequalities
III (Proceedings of the Third Symposium on Inequalities held at the
University of California, Los Angeles, Calif., September 1–9, 1969,
dedicated to the memory of Theodore S. Motzkin). New York-London:
Academic Press, 1972. P. 159–175.

[3] Khachiyan L. G. Polynomial algorithms in linear programming //
USSR Computational Mathematics and Mathematical Physics. 1980. Т.
20. No. 1. P. 53-72.

[4] Shor N.Z. Cut-off method with space extension in convex
programming problems // Cybernetics and Systems Analysis. 1977.
Vol. 13, № 1. P. 94–96.

[5] Karmarkar N. A new polynomial-time algorithm for linear
programming // Proceedings of the sixteenth annual ACM symposium
on Theory of computing. ACM, 1984. P. 302-311.

[6] Sokolinskaya I.M., Sokolinskii L.B. Parallel algorithm for solving
linear programming problem under conditions of incomplete data //
Automation and Remote Control. 2010. Vol. 71, No. 7. P. 1452-1460.

[7] Rechkalov T.V., Zymbler M.L. Accelerating Medoids-based Clustering
with the Intel Many Integrated Core Architecture // Proceedings of the
9th International Conference on Application of Information and
Communication Technologies (AICT'2015), October 14–16, 2015,
Rostov-on-Don, Russia. IEEE, 2015. P. 413–417.

[8] Zymbler M.L. Best-match Time Series Subsequence Search on the Intel
Many Integrated Core Architecture // Proceedings of the 19th East-
European Conference on Advances in Databases and Information
Systems, ADBIS 2015 (Poitiers, France, September 8–11, 2015).
Lecture Notes in Computer Science. Vol. 9282. Springer, 2015. P. 275–
286.

[9] Sokolinskaya I.M., Sokolinsky L.B. Implementation of Parallel Pursuit
Algorithm for Solving Unstable Linear Programming Problems.
Bulletin of the South Ural State University. Series: Computational

Mathematics and Software Engineering. 2016. vol. 5, no. 2. pp. 15–29.
(in Russian) DOI: 10.14529/cmse160202.

[10] Sokolinskaya I., Sokolinsky L. Solving unstable linear programming
problems of high dimension on cluster computing systems // 1st
Russian Conference on Supercomputing Days 2015, RuSCDays 2015;
Moscow; Russian Federation; 28 September 2015 through 29
September 2015. CEUR Workshop Proceedings. V. 1482, CEUR-
WS.org 2015. P. 420-427.

[11] Eremin I.I. Fejerovskie metody dlya zadach linejnoj i vypukloj
optimizatsii [Fejer’s Methods for Problems of Convex and Linear
Optimization]. Chelyabinsk, Publishing of the South Ural State
University, 2009. 200 p.

[12] Sokolinskaya I., Sokolinsky L. B. Revised Pursuit Algorithm for
Solving Non-Stationary Linear Programming Problems on Modern
Computing Clusters with Manycore Accelerators // Supercomputing.
RuSCDays 2016. Communications in Computer and Information
Science. 2016. Vol. 687. P. 212-223. DOI: 10.1007/978-3-319-55669-
7_17.

[13] Eremin I.I. Teoriya lineynoy optimizatsii [The theory of linear
optimization]. Ekaterinburg: Publishing House of the "Yekaterinburg",
1999. 312 pp.

[14] Thiagarajan S.U., Congdon C., Naik S., Nguyen L.Q. Intel Xeon Phi
coprocessor developer’s quick start guide. White Paper. Intel, 2013.
URL: https://software.intel.com/sites/default/files/managed/ee/4e/intel-
xeon-phi-coprocessor-quick-start-developers-guide.pdf (accessed
04.03.2017).

