

An Scalable Algorithm for Solving Nonstationary Linear Programming Problems

Irina M. Sokolinskaya South Ural State University (national research university) School of Electrical Engineering and Computer Science

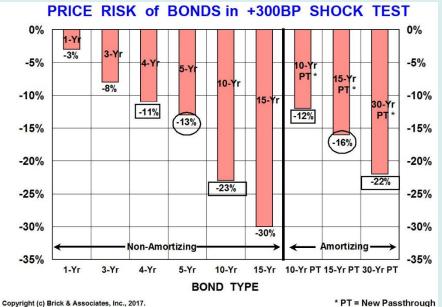
The large-scale linear programming (LP) problems

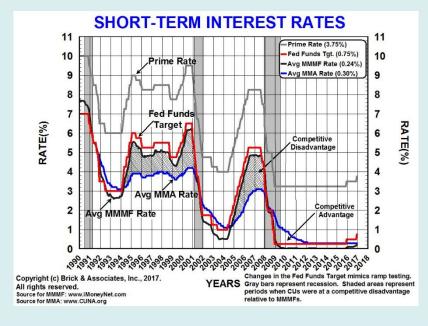
 $\max\left\{\left\langle c, x\right\rangle | Ax \le b, x \ge 0\right\}$

- Schedule crews for 3 400 daily flights in 40 countries
- Buy ads in 10-15 local publications across 40 000 zip codes
- Pick one of 742 trillion choices in creating the US National Football League schedule
- Select 5 offers out of 1 000 for each of 25 000 000 customers of online store
- Place 1 000s of stock keeping units on dozens of shelves in 2 000 stores
- Decide among 200 000 000 maintenance routing options

Asset-liability management

- Dynamic LP task
- 1.7 billion constraints
- 5.1 billion variables

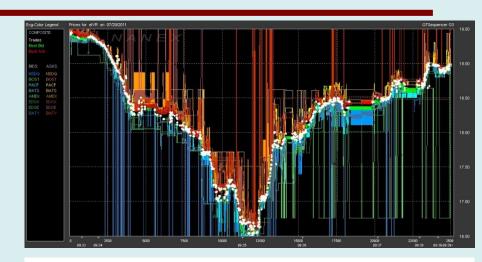


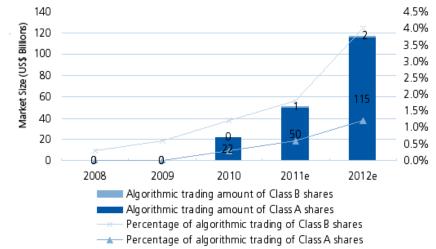


Sodhi M.S. LP modeling for asset-liability management: A survey of choices and simplifications // Operations Research. 2005. V. 53. No. 2. P. 181-196.

Algorithmic trading

- The number of variables: 10⁵-10⁶
- The number of inequalities: 10⁶-10⁷
- The period of input data change: 10⁻²-10⁻³ sec.





Non-Stationary Linear Programming Problem

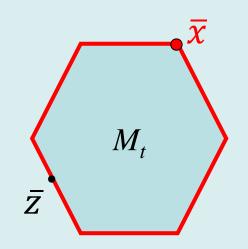
 $\max\left\{\left\langle c_t, x\right\rangle \mid A_t x \le b_t, x \ge 0\right\}$

- $x \in \mathbb{R}_n$
- A_t the matrix $m \times n$
- c_t, b_t the vectors in the vector space \mathbb{R}_n
- $t \in \mathbb{R}_{\geq 0}$ the time

The idea of the algorithm NSLP (Non Stationary Linear Programming)

Two phases of the algorithm :

- Quest calculates a solution $\overline{z} \in M_t$
- Targeting moves point \overline{z} in such a way that the solution of the LP problem \overline{x} permanently was in its ε - vicinity

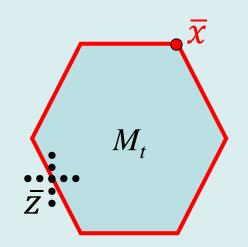


 $A_t x \leq b_t \iff x \in M_t$

The idea of the algorithm NSLP (Non Stationary Linear Programming)

Two phases of the algorithm :

- Quest calculates a solution $\overline{z} \in M_t$
- Targeting moves point \overline{z} in such a way that the solution of the LP problem \overline{x} permanently was in its ε - vicinity



 $A_t x \leq b_t \iff x \in M_t$

The Quest phase (search for $\overline{z} \in M_t$)

We can not simply solve the system of equations $A_t x = b_t$, since while we solve it, the polytope M_t will change the shape and position in space.

$$M_t$$
 \overline{Z}

 $A_t x \leq b_t \iff x \in M_t$

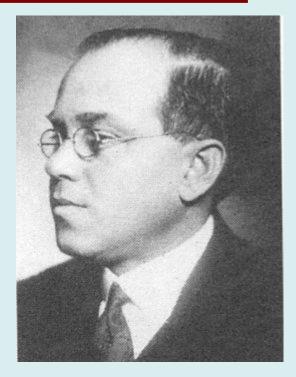
 $M_{t'}$

 $A_{t'} x \leq b_{t'} \Leftrightarrow x \in M_{t'}$

The fejerian maps

M – convex bounded set

A single-valued map $\varphi \colon \mathbb{R}^n \to \mathbb{R}^n$ is called *M*-fejerian if



Lipót Fejér (1880 – 1959) Hungarian mathematician

Fejer process

$$\varphi^{s}(x) = \varphi \dots \varphi(x)$$

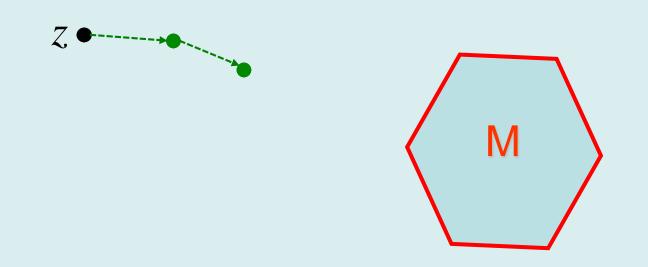
$$x_{0} \in \mathbb{R}^{n}$$

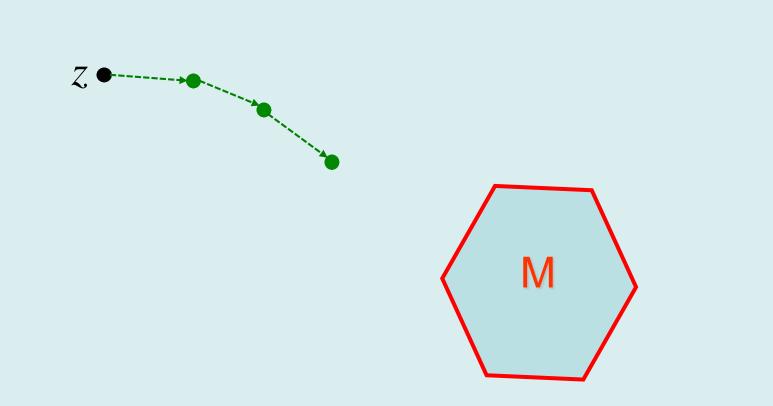
$$\{\varphi^{s}(x_{0})\}_{s=0}^{+\infty}$$

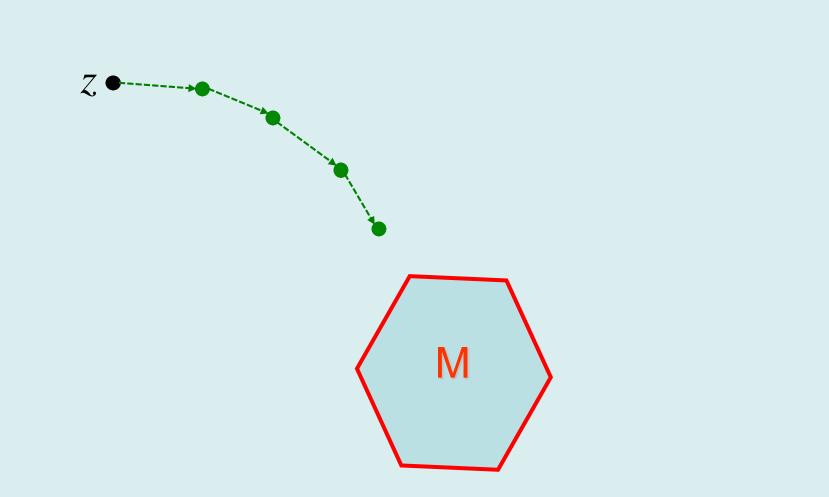
$$x_{0} \xrightarrow{x_{1}} \xrightarrow{x_{2}} \xrightarrow{x_{3}} \xrightarrow{x_{4}} \xrightarrow{x_{5}} \xrightarrow{x_{0}} M$$

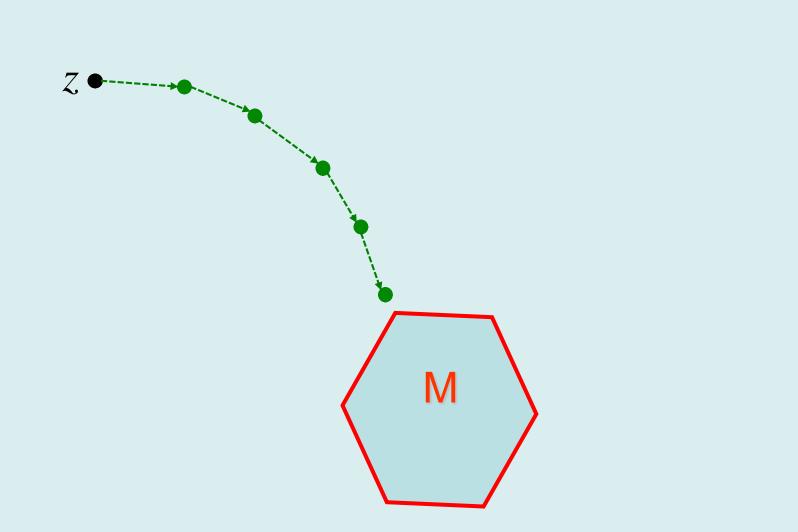
$$x_{i} = \varphi^{i}(x_{0})$$

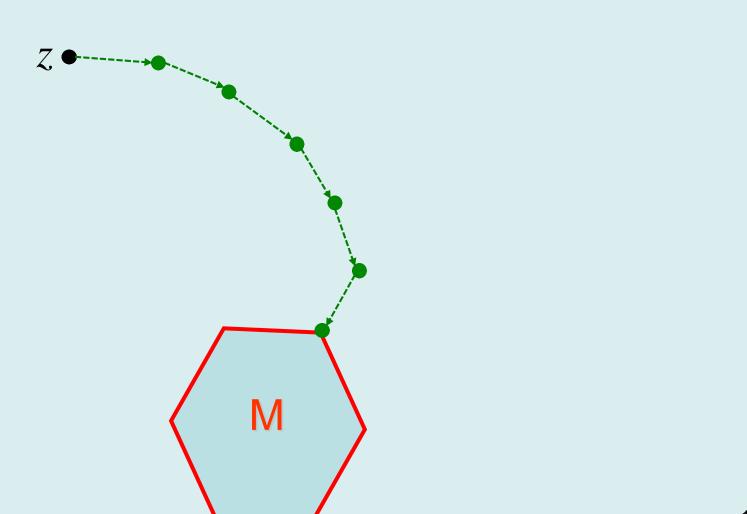
Continuous single-valued M-fejerian map converges to a point belonging to the polytope M (M - convex bounded set)











Fejer map for the Quest phase

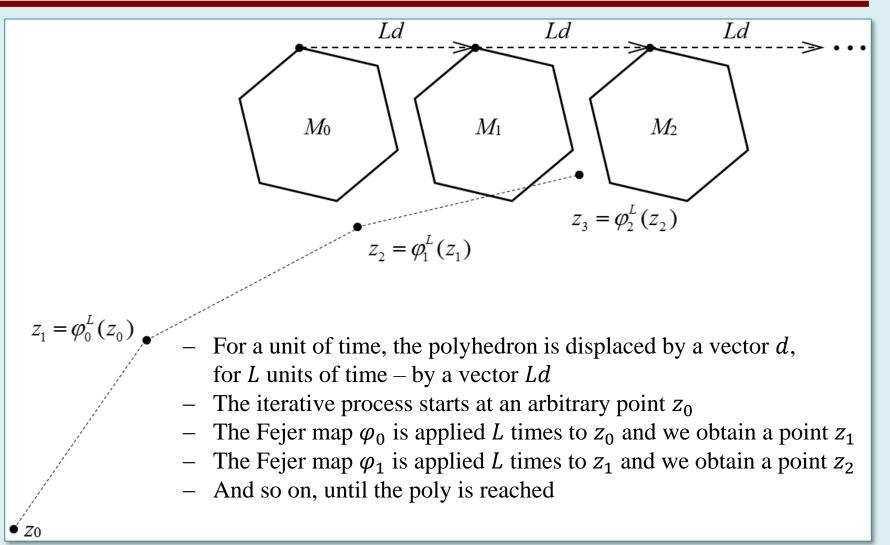
$$\varphi_t(x) = x - \frac{1}{m} \sum_{i=1}^m \frac{\max\{\langle a_{ti}, x \rangle - b_{ti}, 0\}}{\|a_{ti}\|^2} \cdot a_{ti}$$

- $a_{ti} i$ -th row the matrix A_t
- b_{t1}, \ldots, b_{tm} elements of the column b_t
- m number of rows of the matrix A_t
- t the time

Organization of the Quest phase

- Every L iterations, the input data update is performed
- Let $t_0 = 0, t_1 = L, t_2 = 2L, ..., t_k = kL, ...$
- Let the polytope M_t take shapes and locations $M_0, M_1, \dots, M_k, \dots$ at this points of time
- Let φ₀, φ₁, ..., φ_k, ... be Fejer maps at this points of time
- In the Quest phase, the iterative process calculates the following sequence of points:
 {z₁ = φ^L₀(z₀), z₂ = φ^L₁(z₁), ..., z_k = φ^L_{k-1}(z_{k-1}), ...}

Example «Translation»



Mathematical model for Translation

$$\max\{\langle c, x \rangle | A(x - td) \le b, x \ge 0\}$$

$$\varphi_k(x) = x - \frac{\lambda}{m} \sum_{i=1}^m \frac{\max\{\langle a_i, x - kLd \rangle - b_i, 0\}}{\|a_i\|^2} \cdot a_i$$

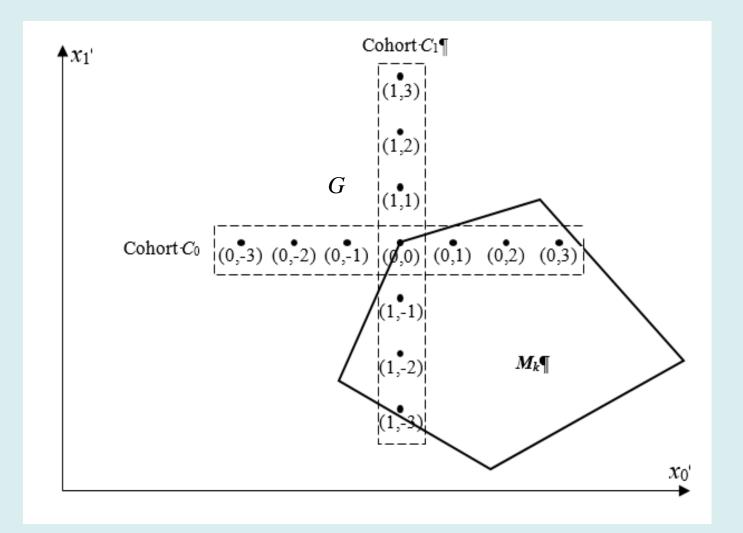
$$z_k = \varphi_{k-1}^L(z_{k-1})$$

Convergence theorem.

If $\forall x \in \mathbb{R}^n \setminus M(||Ld|| < \operatorname{dist}(x, M) - \operatorname{dist}(\varphi^L(x), M))$, then $\lim_{k \to \infty} \operatorname{dist}(z_k, M_k) = 0.$

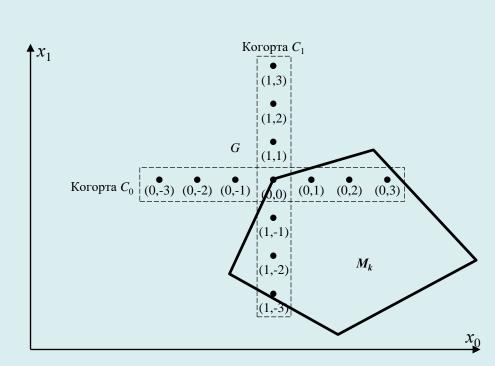
 $dist(z, M) = inf\{||z - x||: x \in M\}$

The Targeting phase



Targeting phase includes the following steps

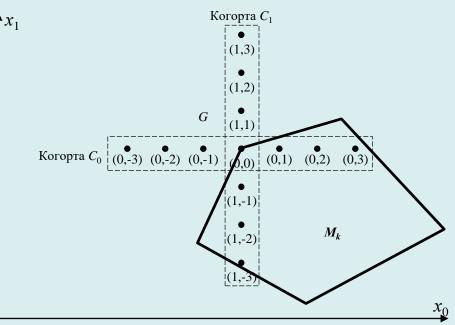
- 1. Build the *n*-dimensional axisymmetric cross *G* which has the center at point $g_0 = z_k$, where z_k is obtained as a result of the Quest phase
- 2. Calculate $G' = G \cap M_k$
- 3. Calculate $C'_i = C_i \cap G'$ for i = 0, ..., n - 1
- 4. Calculate $Q = \bigcup_{\substack{\chi=0\\\chi=0}}^{n-1} \left\{ \operatorname{argmax} \{ \langle c_k, g \rangle | g \in C'_{\chi}, C'_{\chi} \neq \emptyset \} \right\}$
- 5. If $g_0 \in M_k$ u $\langle c_k, g_0 \rangle \ge \max_{q \in Q} \langle c_k, q \rangle$ then k := k + 1 and go to the step 2
- $6. \qquad g_0:=\frac{\sum_{q\in Q}q}{|Q|}$
- 7. k := k + 1 and go to the step 2



Parallelization of the step 2

$$g \in M_k \Leftrightarrow A_k g \leq b_k \uparrow$$

g – points of the cross G



Further research

 Parallel implementation of the NSLP algorithm in C++ language using MPI library

 Computational experiments on a cluster computing system using synthetic and real LP problems

Thank you for attention!